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As a metric to measure the performance of an online method, dynamic regret with switching cost has drawn

much attention for online decision making problems. Although the sublinear regret has been provided in

much previous research, we still have little knowledge about the relation between the dynamic regret and the

switching cost. In the article, we investigate the relation for two classic online settings: Online Algorithms

(OA) and Online Convex Optimization (OCO). We provide a new theoretical analysis framework that shows

an interesting observation; that is, the relation between the switching cost and the dynamic regret is different

for settings of OA and OCO. Specifically, the switching cost has significant impact on the dynamic regret in

the setting of OA. But it does not have an impact on the dynamic regret in the setting of OCO. Furthermore,

we provide a lower bound of regret for the setting of OCO, which is same with the lower bound in the case of

no switching cost. It shows that the switching cost does not change the difficulty of online decision making

problems in the setting of OCO.
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1 INTRODUCTION

Online Algorithms (OA)1 [14, 15, 37] and Online Convex Optimization (OCO) [9, 23, 38] are two
important settings of online decision making. Methods in both OA and OCO settings are designed
to make a decision at every round and then use the decision as a response to the environment.
Their major differences are outlined as follows.

• For every round, methods in the setting of OA are able to know a loss function first and
then make a decision as the response to the environment.

• However, for every round, methods in the setting of OCO have to make a decision before
knowing the loss function. Thus, the environment may be adversarial to decisions of those
methods.

Both of them have a large number of practical scenarios. For example, both the k-server problem
[4, 26] and the Metrical Task Systems (MTS) problem [1, 4, 10] are usually studied in the setting of
OA. Other problems include online learning [29, 39, 42, 43], online recommendation [41], online
classification [6, 18], online portfolio selection [28], and model predictive control [36], which are
usually studied in the setting of OCO.
Most recent research has begun to investigate performance of online methods in both OA and

OCO settings by using dynamic regret with switching cost [15, 30]. It measures the difference be-
tween the cost yielded by real-time decisions and the cost yielded by the optimal decisions. Com-
paring with the classic static regret [9], it has two major differences.

• First, it allows optimal decisions to change within a threshold over time, which is necessary
in the dynamic environment.2

• Second, the cost yielded by a decision consists of two parts: the operating cost and the switch-
ing cost, while the classic static regret only contains the operating cost.

The switching cost measures the difference between two successive decisions, which is needed in
many practical scenarios such as service management in electric power network [35] and dynamic
resource management in data centers [31, 33, 40]. However, we still have little knowledge about
the relation between the dynamic regret and the switching cost. In the article, we are motivated
by the following fundamental questions:

• Does the switching cost impact the dynamic regret of an online method?

• Does the problem of online decision making become more difficult due to the switching cost?

To answer those challenging questions, we investigate online mirror descent in settings of OA
and OCO and provide a new theoretical analysis framework. According to our analysis, we find an
interesting observation, that is, the switching cost does impact on the dynamic regret in the setting

of OA. But it has no impact on the dynamic regret in the setting of OCO. Specifically, when the
switching cost is measured by ‖xt+1 − xt ‖σ with 1 ≤ σ ≤ 2, the dynamic regret for an OA method

is O (T 1
σ+1D

σ

σ+1 ), whereT is the maximal number of rounds andD is the given budget of dynamics.

But the dynamic regret for an OCO method is O (√TD + √T ), which is same with the case of
no switching cost [20, 21, 50, 51]. Furthermore, we provide a lower bound of dynamic regret,

namely Ω(
√
TD +

√
T ) for the OCO setting. Since the lower bound is still same with the case of

no switching cost [50], it implies that the switching cost does not change the difficulty of the online

decision making problem for the OCO setting. Comparing with previous results, our new analysis is

1Some literature denote OA by “smoothed online convex optimization.”
2Generally, the dynamic environment means the distribution of the data stream may change over time.
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more general than previous results. We define a new dynamic regret with a generalized switching
cost and provide new regret bounds. It is novel to analyze and provide the tight regret bound in the
dynamic environment, since previous analysis cannot work directly for the generalized dynamic
regert. In a nutshell, our main contributions are summarized as follows:

• We propose a new general formulation of the dynamic regret with switching cost and then
develop a new analysis framework based on it.

• We provide O (T 1
σ+1D

σ

σ+1 ) regret with 1 ≤ σ ≤ 2 for the setting of OA and O (√TD + √T )
regret for the setting of OCO by using the online mirror descent.

• We provide a lower bound Ω(
√
TD +

√
T ) regret for the setting of OCO, whichmatches with

the upper bound.

The article is organized as follows. Section 2 reviews related literature. Section 3 presents the
preliminaries. Section 4 presents our new formulation of the dynamic regret with switching cost.
Section 5 presents a new analysis framework and main results. Section 6 presents extensive em-
pirical studies. Section 7 conludes the article and presents future work.

2 RELATEDWORK

In the section, we review related literatures briefly.

2.1 Competitive Ratio and Regret

Although the competitive ratio is usually used to analyze OA methods, and the regret is used to
analyze OCO methods, recent research aims to develop unified frameworks to analyze the per-
formance of an online method in both settings [1–3, 8, 11–13]. Reference [8] provides an analysis
framework that is able to achieve sublinear regret for OA methods and constant competitive ra-
tio for OCO methods. References [1, 11, 12] use a general OCO method, namely online mirror
descent in the OA setting, and improve the existing competitive ratio analysis for k-server and
MTS problems. Different from them, we extend the existing regret analysis framework to handle
a general switching cost and focus on investigating the relation between regret and switching
cost. Reference [3] provides a lower bound for the OCO problem in the competitive ratio analysis
framework, but we provide the lower bound in the regret analysis framework. References [2, 13]
study the regret with switching cost in the OA setting, but the relation between them is not stud-
ied. Comparing with References [2, 13], we extend their analysis and present a more generalized
bound of dynamic regret (see Theorem 1).

2.2 Dynamic Regret and Switching Cost

Regret is widely used as a metric to measure the performance of OCO methods. When the envi-
ronment is static, e.g., the distribution of data stream does not change over time, online mirror

descent yields O (√T ) regret for convex functions and O (logT ) regret for strongly convex func-
tions [9, 23, 38]. When the distribution of data stream changes over time, online mirror descent

yields O (√TD + √T ) regret for convex functions [20], where D is the given budget of dynamics.
Additionally, Reference [51] first investigates online gradient descent in the dynamic environment

and obtains O (√TD + √T ) regret (by setting η ∝
√

D
T
) for convex ft . Note that the dynamic regret

used in Reference [51] does not contain swtiching cost. References [21, 22] use similar but more

general definitions of dynamic regret and still achieves O (√TD + √T ) regret. Furthermore, Refer-

ence [50] presents that the lower bound of the dynamic regret is Ω(
√
TD +

√
T ). Other previous

research investigates the regret under different definitions of dynamics such as parameter variation
[19, 34, 44, 47], functional variation [7, 25, 46], gradient variation [17], and the mixed regularity
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Table 1. Summary of Differences between OA and OCO

Algo. Make decision first? Observe ft first? Metric Has SC?

OA no yes competitive ratio yes
OCO yes no regret no

SC represents “switching cost.”

[16, 24]. Note that the dynamic regret in those previous studies does not contain switching cost,
which is significantly different from our work. Our new analysis shows that this bound is achieved
and optimal when there is switching cost in the regret (see Theorems 2 and 3). The proposed anal-
ysis framework thus shows how the switching cost impacts the dynamic regret for settings of OA
and OCO, which leads to new insights to understand online decision making problems.

3 PRELIMINARIES

In the section, we present the preliminaries of online algorithms and online convex optimization
and highlight their differences. Then, we present the dynamic regret with switching cost, which
is used to measure the performance of both OA methods and OCO methods.

3.1 Online Algorithms and Online Convex Optimization

Comparing with the setting of OCO [9, 23, 38], OA has the following major difference.

• OA assumes that the loss function, e.g., ft , is known before making the decision at every
round. But OCO assumes that the loss function, e.g., ft , is given after making the decision
at every round.

• The performance of an OA method is measured by using the competitive ratio [15], which
is defined by [∑T

t=1 ( ft (xt ) + ‖xt − xt−1‖)
]

[∑T
t=1

(
ft (x

∗
t ) + ‖x∗t − x∗t−1‖

)] .
Here, {x∗t }Tt=1 is denoted by

{x∗t }Tt=1 = argmin
{zt }Tt=1∈L̃TD

T∑
t=1

( ft (zt ) + ‖zt − zt−1‖) ,

where L̃T
D := {{zt }Tt=1 :

∑T
t=1 ‖zt − zt−1‖ ≤ D}. D is the given budget of dynamics. It is the

best offline strategy, which is yielded by knowing all the requests beforehand [15]. Note
that ‖x∗t − x∗t−1‖ is the switching cost yielded by A at the t th round. But OCO is usually
measured by the regret, which is defined by

T∑
t=1

ft (xt ) − min
{zt }Tt=1∈LTD

T∑
t=1

ft (zt ),

whereLT
D := {{zt }Tt=1 :

∑T−1
t=1 ‖zt+1 − zt ‖ ≤ D}.D is also the given budget of dynamics. Note

that the regret in classic OCO algorithm does not contain the switching cost.

To make it clear, we use Table 1 to highlight their differences.
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3.2 Dynamic Regret with Switching Cost

Although the analysis framework of OA and OCO is different, the dynamic regret with switching

cost is a popular metric to measure the performance of both OA and OCO [15, 30]. Formally, for

an algorithm A, its dynamic regret with switching cost R̃A
D is defined by

R̃A
D :=

T∑
t=1

ft (xt ) +
T−1∑
t=1

‖xt+1 − xt ‖ − min
{zt }Tt=1∈LTD

�
�

T∑
t=1

ft (zt ) +
T−1∑
t=1

‖zt+1 − zt ‖�� , (1)

where LT
D := {{zt }Tt=1 :

∑T−1
t=1 ‖zt+1 − zt ‖ ≤ D}. Here, ‖xt+1 − xt ‖ represents the switching cost at

the t th round. D is the given budget of dynamics in the dynamic environment. When D = 0, all
optimal decisions are same. With the increase of D, the optimal decisions are allowed to change
to follow the dynamics in the environment. It is necessary when the distribution of data stream
changes over time.

3.3 Notations and Assumptions

We use the following notations in the article.

• The bold lowercase letters, e.g., x, represent vectors. The normal letters, e.g., μ, represent a
scalar number.

• ‖·‖ represents a general norm of a vector.
• XT represents Cartesian product, namely, X × X × · · · × X︸															︷︷															︸

T times

. F T has the similar meaning.

• Bregman divergence BΦ(x, y) is defined by BΦ(x, y) = Φ(x) − Φ(y) − 〈∇Φ(y), x − y〉.
• A represents a set of all possible online methods, and A ∈ A represents some a specific

online method.
• � represents ‘less than equal up to a constant factor’.
• E represents the mathematical expectation operator.

Our assumptions are presented as follows. They are widely used in previous literature [9, 15,
23, 30, 38].

Assumption 1. The following basic assumptions are used throughout the article.

• For any t ∈ [T ], we assume that ft is convex and has L-Lipschitz gradient.
• The function Φ is μ-strongly convex, that is, for any x ∈ X and y ∈ X, BΦ(x, y) ≥ μ

2 ‖x − y‖2.• For any x ∈ X and y ∈ X, there exists a positive constant R such that

max
{
BΦ(x, y), ��x − y��2}

≤ R2.

• For any x ∈ X, there exists a positive constant G such that

max
{��∇ft (x)��2 , ‖∇Φ(x)‖2}

≤ G2

4 DYNAMIC REGRETWITH GENERALIZED SWITCHING COST

In the section, we propose a new formulation of dynamic regret, which contains a generalized
switching cost. Then, we highlight the novelty of this formulation and present the online mirror
decent method for setting of OA and OCO.

4.1 Formulation

For an algorithm A ∈ A, it yields a cost at the end of every round, which consists of two parts:
operating cost and switching cost. At the t th round, the operating cost is incurred by ft (xt ), and the

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 3, Article 28. Publication date: April 2020.
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switching cost is incurred by ‖xt+1 − xt ‖σ with 1 ≤ σ ≤ 2. The optimal decisions are denoted by
{y∗t }Tt=1, which is denoted by

{y∗t }Tt=1 = argmin
{yt }Tt=1∈LTD

T∑
t=1

ft (yt ) +
T−1∑
t=1

��yt+1 − yt ��σ .
Here, LT

D is denoted by

LT
D =

⎧⎪⎨⎪⎩{yt }
T
t=1 :

T−1∑
t=1

��yt+1 − yt �� ≤ D
⎫⎪⎬⎪⎭ .

D is a given budget of dynamics, which measures how much the optimal decision, i.e., y∗t can
change over t . With the increase of D, those optimal decisions can change over time to follow the
dynamics in the environment effectively.
Denote an optimal method A∗, which yields the optimal sequence of decisions {y∗t }Tt=1. Its total

cost is denoted by

cost(A∗) =
T∑
t=1

ft (y
∗
t ) +

T−1∑
t=1

��y∗t+1 − y∗t ��σ .
Similarly, the total cost of an algorithm A ∈ A is denoted by

cost(A) =
T∑
t=1

ft (xt ) +
T−1∑
t=1

‖xt+1 − xt ‖σ .

Definition 1. For any algorithmA ∈ A, its dynamic regret RA
D with switching cost is defined by

RA
D := cost(A) − cost(A∗). (2)

Our new formulation of the dynamic regret RA
D makes a balance between the operating cost and

the switching cost, which is different from the previous definition of the dynamic regret in [20, 21,
51].

Note that the freedom of σ with 1 ≤ σ ≤ 2 allows our new dynamic regret RA
D to measure the

performance of online methods for a large number of problems. Some problems such as dynamic
control of data centers [32], stock portfolio management [27], require to be sensitive to the small
change between successive decisions, and the switching cost in these problems is usually bounded
by ‖xt+1 − xt ‖. But many problems such as dynamic placement of cloud service [49] need to bound
the large change between successive decisions effectively, and the switching cost in these problems
is usually bounded by ‖xt+1 − xt ‖2.
4.2 Novelty of the New Formulation

Our new formulation of the dynamic regret is more general than previous formulations [15, 30],
which are presented as follows.

• Support more general switching cost. Reference [15] defines the dynamic regret with
switching cost by Equation (1). It is a special case of our new formulation (2) by setting
σ = 1. The sequence of optimal decisions {y∗t }Tt=1 is dominated by { ft }Tt=1 and D and does

not change over {xt }Tt=1. RA
D is thus impacted by {xt }Tt=1 for the given { ft }Tt=1 and D. Gen-

erally, ‖xt+1 − xt ‖ is more sensitive to measure the slight change between xt+1 and xt
than ‖xt+1 − xt ‖2. But, for some problems such as the dynamic placement of cloud ser-
vice [49], the switching cost at the t th round is usually measured by ‖xt+1 − xt ‖2, instead
of ‖xt+1 − xt ‖. The previous formulation in Reference [15] is not suitable to bound the

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 3, Article 28. Publication date: April 2020.
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ALGORITHM 1:MD-OA: Online Mirror Descent for OA.

Require: The learning rate γ , and the number of rounds T .
1: for t = 1, 2, . . . ,T do

2: Observe the loss function ft . � Observe ft first.
3: Query a gradient ĝt ∈ ∇ft (xt−1).
4: xt = argminx∈X

〈
ĝt , x − xt−1〉 + 1

γ BΦ(x, xt−1). � Play a decision after knowing ft .

5: return xT

switching cost for those problems. Benefiting from 1 ≤ σ ≤ 2, (2) supports more general
switching cost than previous work.

• Support more general convex ft . Reference [30] defines the the dynamic regret with
switching cost by

T∑
t=1

ft (xt ) +
T−1∑
t=1

‖xt+1 − xt ‖2 − min
{zt }Tt=1∈XT

�
�

T∑
t=1

ft (zt ) +
T−1∑
t=1

‖zt+1 − zt ‖2�
� ,

and they use
∑T−1

t=1 ‖x∗t+1 − x∗t ‖ to bound the regret. Here, x∗t = argminx∈X ft (x). It implicitly
assumes that the difference between x∗t+1 and x

∗
t are bounded. It is reasonable for a strongly

convex function ft butmay not be guaranteed for a general convex function ft . Additionally,
Reference [30] uses ‖x∗t+1 − x∗t ‖2 to bound the switching cost, which is more sensitive to
the significant change than ‖x∗t+1 − x∗t ‖. But it is less effective to bound the slight change
between them, which is not suitable for many problems such as dynamic control of data
centers [32].

4.3 Algorithm

We use mirror descent [5] in the online setting, and present the algorithm MD-OA for the OA
setting and the algorithm MD-OCO for the OCO setting, respectively.
As illustrated in Algorithms 1 and 2, both MD-OA and MD-OCO are performed iteratively. For

every round, MD-OA first observes the loss function ft and then makes the decision xt at the t th
round. But MD-OCO first makes the decision xt and then observes the loss function ft . Therefore,
MD-OA usually makes the decision based on the observed ft for the current round, but MD-OCO
has to predict a decision for the next round based on the received ft .
Note that both MD-OA and MD-OCO need to solve a convex optimizaiton problem to update x .

The complexity is dominated by the domain X and the distance function Φ. Besides, both of them
lead to O (d ) memory cost. They lead to comparable cost of computation and memory.

5 THEORETICAL ANALYSIS

In this section, we present our main analysis results about the proposed dynamic regret for both
MD-OA and MD-OCO and discuss the difference between them.

5.1 New Bounds for Dynamic Regret with Switching Cost

The upper bound of dynamic regret for MD-OA is presented as follows.

Theorem 1. Choose γ = min{ μ
L
,T − 1

1+σ D
1

1+σ } in Algorithm 1. Under Assumption 1, we have

sup
{ft }Tt=1∈F T

RMD-OA
D � T

1
σ+1D

σ

σ+1 +T
1

σ+1D−
1

σ+1 .

That is, Algorithm 1 yields O (T 1
σ+1D

σ

σ+1 ) dynamic regret with switching cost.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 3, Article 28. Publication date: April 2020.
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ALGORITHM 2:MD-OCO: Online Mirror Descent for OCO.

Require: The learning rate η, the number of rounds T , and x0.

1: for t = 0, 1, . . . ,T − 1 do
2: Play xt . � Play a decision first before knowing ft .
3: Receive a loss function ft .
4: Query a gradient ḡt ∈ ∇ft (xt ).
5: xt+1 = argminx∈X

〈
ḡt , x − xt 〉 + 1

η BΦ(x, xt ).

6: return xT

Remark 1. When σ = 1, MD-OA yields O (√TD) dynamic regret, which achieves the state-of-

the-art result in Reference [15]. When σ = 2, MD-OA yields O (T 1
3D

2
3 ) dynamic regret, which is a

new result as far as we know.

However, we find different result for MD-OCO. The switching cost does not have an impact on
the dynamic regret.

Theorem 2. Choose η = min{ μ4 ,
√

D+G
T
} in Algorithm 2. Under Assumption 1, we have

sup
{ft }Tt=1∈F T

RMD-OCO
D �

√
TD +

√
T .

That is, Algorithm 2 yields O (√DT + √T ) dynamic regret with switching cost.

Remark 2. MD-OCO still yields O (√TD + √T ) dynamic regret [20] when there is no switching
cost. It shows that the switching cost does not have an impact on the dynamic regret.

Before presenting the discussion, we show that MD-OCO is the optimum for dynamic regret,
because the lower bound of the problem matches with the upper bound yielded by MD-OCO.

Theorem 3. Under Assumption 1, the lower bound of the dynamic regret for the OCO problem is

inf
A∈A sup

{ft }Tt=1∈F T

RA
D = Ω

(√
TD +

√
T
)
.

Remark 3. When there is no switching cost, the lower bound of dynamic regret for OCO is

O (√TD + √T ) [50]. Theorem 3 achieves it for the case of switching cost. It implies that the switch-
ing cost does not let the online decision making in the OCO setting become more difficult.

5.2 Insights

Switching cost has a significant impact on the dynamic regret for the setting of OA. Ac-
cording to Theorem 1, the switching cost has a significant impact on the dynamic regret ofMD-OA.
Given a constant D, a small σ leads to a strong dependence on T , and a large σ leads to a weak
dependence onT . The reason is that a large σ leads to a large learning rate, which is more effective
to follow the dynamics in the environment than a small learning rate.
Switching cost does not have an impact on the dynamic regret for the setting of OCO.

According to Theorem 2 and Theorem 3, the dynamic regret yielded by MD-OCO is tight, and
MD-OCO is the optimum for the problem. Although the switching cost exists, the dynamic regret
yielded by MD-OCO does not have any difference.
As we can see, there is a significant difference between the OA setting and the OCO setting. The

reasons are presented as follows.
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• MD-OA makes decisions after observing the loss function. It has known the potential op-
erating cost and switching cost for any decision. Thus, it can make decisions to achieve a
good tradeoff between the operating cost and switching cost.

• MD-OCO make decisions before observing the loss function. It only knows the historical
information and the potential switching cost, and does not know the potential operating
cost for any decision at the current round. In the worst case, if the environment provides
an adversary loss function to maximize the operating cost based on the decision made by

MD-OCO, MD-OCO has to lead to O (√TD + √T ) regret even for the case of no switching
cost [20]. Although the potential switching cost is known, MD-OCO cannot make a better
decision to reduce the regret due to unknown operating cost.

6 EMPIRICAL STUDIES

In this section, we evaluate the total regret and the regret caused by switching cost for settings
of both OA and OCO by running online mirror decent. Our experiments show the importance of
knowing loss function before making a decision.

6.1 Experimental Settings

We conduct binary classification by using the logistic regression model. Given an instance a ∈ Rd

and its label y ∈ {1,−1}, the loss function is

f (x) = log
(
1 + exp

(
−ya
x

))
.

In experiments, we let Φ(x) = 1
2 ‖x‖2.

We test four methods, including MD-OA, i.e., Algorithm 1, and MD-OCO, i.e., Algorithm 2, on-
line balanced descent [15] denoted by BD-OA in the experiment, and multiple online gradient
descent [48] denoted by MGD-OCO in the experiment. Both MD-OA and BD-OA are two variants
of online algorithm, and similarily both MD-OCO and MGD-OCO are two variants of online con-
vex optimization. We test those methods on three real datasets: usenet1,3 usenet2,4 and spam.5 The
distributions of data streams change over time for those datasets, which is just the dynamic envi-
ronment as we have discussed. More details about those datasets and its dynamics are presented
at: http://mlkd.csd.auth.gr/concept_drift.html.
We use the average loss to test the regret, because they have the same optimal reference points

{y∗t }tl=1. For the t th round, the average loss is defined by

1

t

t∑
l=1

log
(
1 + exp

(
−ylA
l xl

))
︸																																			︷︷																																			︸
average loss caused by operating cost

+
1

t

t−1∑
l=0

‖xl+1 − xl ‖
︸																︷︷																︸

average loss caused by switching cost

,

where Al is the instance at the lth round and yl is its label. Besides, we evaluate the average loss
caused by operating cost separately and denote it by OL. Similarly, SL represents the average loss
caused by switching cost.
In experiment, we set D = 10. Since G, μ, and L are usually not known in practical scenarios,

the learning rate is set by the following heuristic rules. We choose the learning rate γt = ηt =
δ√
t

for the t th iteration, where δ is a given constants by the following rules. First, we set a large value
δ = 10. Then, we iteratively adjust the value of δ by δ ← δ/2 when δ cannot let the average loss

3http://lpis.csd.auth.gr/mlkd/usenet1.rar.
4http://lpis.csd.auth.gr/mlkd/usenet2.rar.
5http://lpis.csd.auth.gr/mlkd/concept_drift/spam_data.rar.
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Fig. 1. OCO methods leads to large average loss than OA methods.

converge. If the first appropriate δ can let the average loss converge, then it is finally chosen as the
optimal learning rate. We use the similar heuristic method to determine other parameters, e.g., the
number of inner iterations in MGD-OCO. Finally, the mirror map function is 1

2 ‖·‖2 for BD-OA.

6.2 Numerical Results

As shown in Figure 1, both MD-OA and BD-OA are much more effcetive thanMD-OCO andMGD-
OCO to decrease the average loss during a few rounds of begining. Those OA methods yield much
smaller average loss than OCO methods. The reason is that OA knows the loss function ft before
making decision xt . But, OCO has to make decision before know the loss function. Benefiting from
knowing the loss function ft , OA reduces the average loss more efffectively than OCO. It matches

with our theoretical analysis. That is, Algorithm 1 leads to O (T 1
1+σ D

σ

1+σ ) regret, but Algorithm 2

leads to O (√TD + √T ) regret. When σ ≥ 1, OA tends to lead to smaller regret than OCO. The
reason is that OA knows the potential loss before making a decision for every round. But, OCO
works in an adversary environment, and it has to make a decision before knowing the potential
loss. Thus, OA is able to make a better decision than OCO to decrease the loss. Additionally, we
observe that both MD-OA and BD-OA reduce much more average loss than MD-OCO and MGD-
OCO for a large σ , which validates our theoretical results nicely. It means that OA is more effective
to reduce the switching cost than OCO for a large σ . Specifically, as shown in Figure 2, the average
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Fig. 2. Comparing with MD-OCO. The superiority of MD-OA becomes significant for a large σ .

Fig. 3. MD-OCO leads to more average loss caused by switching cost than MD-OA, especially for a large σ .

loss caused by switching cost of OA methods, i.e., MD-OA(SL), has unsignificant changes, but that
of OCO methods, i.e., MD-OCO(SL), has remarkable increase for a large σ .

When handling the whole dataset, the final difference of switching cost between MD-OA and
MD-OCO is shown in Figure 3. Here, the difference of switching cost is measured by using average
loss caused by switching cost of MD-OCOminus corresponding average loss caused by switching cost
ofMD-OA. Aswe can see, it highlights that OA ismore effective to decrease the switching cost. The
superiority becomes significant for a large σ , which verifies our theoretical results nicely again.
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7 CONCLUSION AND FUTURE WORK

We have proposed a new dynamic regret with switching cost and a new analysis framework for
both online algorithms and online convex optimization. We find that the switching cost signifi-
cantly impacts on the regret yielded by OA methods but does not have an impact on the regret
yielded by OCO methods. Empirical studies have validated our theoretical result.
Moreover, the switching cost in the article is measured by using the norm of the difference

between two successive decisions, that is, ‖xt+1 − xt ‖. It is interesting to investigate whether the
work can be extended to a more general distance measure function such as Bregman divergence
dB (xt+1, xt ) or Mahalanobis distance dM (xt+1, xt ). Specifically, if the Bregman divergence6 is used,
then the switching cost is thus dB (xt+1, xt ) = ψ (xt+1) −ψ (xt ) − 〈∇ψ (xt ), xt+1 − xt 〉, whereψ (·) is
a differentiable distance function. If the Mahalanobis distance7 is used, then the switching cost is

thus dM (xt+1, xt ) =
√
(xt+1 − xt )
S(xt+1 − xt ), where S is the given covariance matrix. We leave

the potential extension as the future work.
Besides, our analysis provides regret bound for any given budget of dynamics D. It is a good

direction to extend the work in the parameter-free setting, where analysis is adaptive to the dy-
namics D of environment. Some previous work, such as Reference [45], has proposed the adaptive
online method and analysis framework. But Reference [45] works in the expert setting, not a gen-
eral setting of online convex optimization. It is still unknown whether their method can be used
to extend our analysis.

APPENDIX

PROOFS

Lemma 1. Given any vectors g, ut ∈ X, u∗ ∈ X , and a constant scalar λ > 0, if

ut+1 = argmin
u∈X

〈
g, u − ut 〉 + 1

λ
BΦ(u, ut ),

we have 〈
g, ut+1 − u∗〉 ≤ 1

λ
(BΦ(u

∗, ut ) − BΦ(u
∗, ut+1) − BΦ(ut+1, ut )) .

Proof. Denoteh(u) =
〈
g, u − ut 〉 + 1

λ
BΦ(u, ut ), and uτ = ut+1 + τ (u

∗ − ut+1). According to the
optimality of xt , we have

0 ≤ h(uτ ) − h(ut+1)
=
〈
g, uτ − ut+1〉 + 1

λ
(BΦ(uτ , ut ) − BΦ(ut+1, ut ))

=
〈
g,τ (u∗ − ut+1)〉 + 1

λ
(Φ(uτ ) − Φ(ut+1) + 〈∇Φ(ut ),τ (ut+1 − u∗)〉)

≤ 〈g,τ (u∗ − ut+1)〉 + 1

λ

〈∇Φ(ut+1),τ (u∗ − ut+1)〉 + 1

λ

〈∇Φ(ut ),τ (ut+1 − u∗)〉
=
〈
g,τ (u∗ − ut+1)〉 + 1

λ

〈∇Φ(ut ) − Φ(ut+1),τ (ut+1 − u∗)〉 .
Thus, we have 〈

g, ut+1 − u∗〉 ≤ 1

λ

〈∇Φ(ut ) − Φ(ut+1), ut+1 − u∗〉
=
1

λ
(BΦ(u

∗, ut ) − BΦ(u
∗, ut+1) − BΦ(ut+1, ut )) .

6See details in https://en.wikipedia.org/wiki/Bregman_divergence.
7See details in https://en.wikipedia.org/wiki/Mahalanobis_distance.
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It completes the proof. �

Lemma 2. For any x ∈ X, we have
BΦ(y

∗
t+1, x) − BΦ(y

∗
t , x) ≤ 2G ��y∗t+1 − y∗t �� . (1)

Proof. According to the third-point identity of the Bregman divergence, we have

BΦ(y
∗
t+1, x) − BΦ(y

∗
t , x)

=
〈∇Φ(y∗t+1) − ∇Φ(x), y∗t+1 − y∗t 〉 − BΦ(y

∗
t , y
∗
t+1)

©1
≤
〈∇Φ(y∗t+1) − ∇Φ(x), y∗t+1 − y∗t 〉
≤ ��∇Φ(y∗t+1) − ∇Φ(x)�� ��y∗t+1 − y∗t ��
≤ (��∇Φ(y∗t+1)�� + ‖∇Φ(x)‖) ��y∗t+1 − y∗t ��
≤2G ��y∗t+1 − y∗t �� . (2)

©1 holds, because BΦ(u, v) ≥ 0 holds for any vectors u and v. It completes the proof. �

Lemma 3. Given xt−1 ∈ X and ĝt , if xt = argminx∈X
〈
ĝt , x − xt−1〉 + 1

γ
BΦ(x, xt−1), we have

‖xt − xt−1‖ ≤ 2Gγ

μ
.

Proof. 〈
ĝt , xt − xt−1〉 + μ

2γ
‖xt − xt−1‖2©1≤

〈
ĝt , xt − xt−1〉 + 1

γ
BΦ(xt , xt−1)©2≤ 0.

©1 holds due to Φ is μ-strongly convex, and ©2 holds due to the optimality of xt . Thus,

μ

2γ
‖xt − xt−1‖2 ≤ 〈ĝt ,−xt + xt−1〉 ≤ ��ĝt �� ‖−xt + xt−1‖ ≤ G ‖−xt + xt−1‖ .

That is,

‖xt − xt−1‖ ≤ 2Gγ

μ
.

It completes the proof. �

Proof to Theorem 1:

Proof.

ft (xt ) − ft (y
∗
t )

=ft (xt ) − ft (xt−1) + ft (xt−1) − ft (y
∗
t )

≤ ft (xt ) − ft (xt−1) +
〈
ĝt , xt−1 − y∗t

〉
=ft (xt ) − ft (xt−1) − 〈ĝt , xt − xt−1〉 + 〈ĝt , xt − y∗t 〉
©1
≤
L

2
‖xt−1 − xt ‖2 + 〈ĝt , xt − y∗t 〉

©2
≤
L

2
‖xt−1 − xt ‖2 + 1

γ

(
BΦ(y

∗
t , xt−1) − BΦ(y

∗
t , xt ) − BΦ(xt , xt−1)

)
©3
≤
Lγ − μ

2γ
‖xt−1 − xt ‖2 + 1

γ

(
BΦ(y

∗
t , xt−1) − BΦ(y

∗
t , xt )

)
©4
≤
1

γ

(
BΦ(y

∗
t , xt−1) − BΦ(y

∗
t , xt )

)
. (3)
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©1 holds, because ft has L-Lipschitz gradient.©2 holds due to Lemma 1 by setting g = ĝt , ut = xt−1,
ut+1 = xt , u

∗ = y∗t , and λ = γ .©3 holds, because that Φ is μ-strongly convex, that is, BΦ(xt , xt−1) ≥
μ

2 ‖xt − xt−1‖2. ©4 holds due to γ ≤ μ

L
.

Thus, we have

T∑
t=1

(
ft (xt ) − ft (y

∗
t ) + ‖xt − xt−1‖σ

) − T∑
t=1

��y∗t − y∗t−1��σ

≤
T∑
t=1

(
ft (xt ) − ft (y

∗
t ) + ‖xt − xt−1‖σ

)

©1
≤

T∑
t=1

‖xt − xt−1‖σ + 1

γ

T∑
t=1

(
BΦ(y

∗
t , xt−1) − BΦ(y

∗
t , xt )

)

=

T∑
t=1

‖xt − xt−1‖σ + 1

γ

(
BΦ(y

∗
1, x0) − BΦ(y

∗
T , xT )

)
+

1

γ

T−1∑
t=1

(
BΦ(y

∗
t+1, xt ) − BΦ(y

∗
t , xt )

)

©2
≤

T∑
t=1

‖xt − xt−1‖σ + 2G

γ

T−1∑
t=1

��y∗t+1 − y∗t �� + 1

γ

(
BΦ(y

∗
1, x0) − BΦ(y

∗
T , xT )

)

≤
T∑
t=1

‖xt − xt−1‖σ + 2G

γ

T−1∑
t=1

��y∗t+1 − y∗t �� + 1

γ
BΦ(y

∗
1, x0)

≤
T∑
t=1

‖xt − xt−1‖σ + 2GD

γ
+
R2

γ

©3
≤

(
2G

μ

)σ
γ σT +

2GD + R2

γ
.

©1 holds due to (3). ©2 holds due to

BΦ(y
∗
t+1, xt ) − BΦ(y

∗
t , xt ) ≤ 2G ��y∗t+1 − y∗t ��

according to Lemma 2. ©3 holds due to Lemma 3.

Choose γ = min{ μ
L
,T − 1

1+σ D
1

1+σ }. We have

T∑
t=1

(
ft (xt ) − ft (y

∗
t ) + ‖xt − xt−1‖σ

) − T∑
t=1

��y∗t − y∗t−1��σ

≤
(
2G

μ

)σ
T

1
σ+1D

σ

σ+1 +max

{
L(2GD + R2)

μ
,T

1
σ+1

(
2GD

σ

σ+1 + R2D−
1

σ+1

)}

�T 1
σ+1D

σ

σ+1 +T
1

σ+1D−
1

σ+1 .

Since it holds for any seqence { ft }Tt=1 ∈ F T , we finally obtain

sup
{ft }Tt=1∈F T

RMD-OA
D �T 1

σ+1D
σ

σ+1 +T
1

σ+1D−
1

σ+1 .

It completes the proof. �
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Proof to Theorem 2:

Proof.

ft (xt ) − ft (y
∗
t ) + ‖xt − xt+1‖σ − ��y∗t − y∗t+1��σ

≤ 〈ḡt , xt − y∗t 〉 + ‖xt − xt+1‖σ
=
〈
ḡt , xt − xt+1〉 + 〈ḡt , xt+1 − y∗t 〉 + ‖xt − xt+1‖σ

©1
≤
〈
ḡt , xt − xt+1〉 + 1

η

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1) − BΦ(xt+1, xt )

)
+ ‖xt − xt+1‖σ

©2
≤
〈
ḡt , xt − xt+1〉 − μ

2η
‖xt+1 − xt ‖2 + 1

η

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1)

)
+ ‖xt − xt+1‖σ

©3
≤
η

μ
��ḡt ��2 +

(
− μ

4η
‖xt+1 − xt ‖2 + ‖xt+1 − xt ‖σ

)
+
1

η

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1)

)

≤ηG
2

μ
+ �

�−
(σ
2

) 2
2−σ
(
4η

μ

) σ

2−σ
+

(σ
2

) σ

2−σ
(
4η

μ

) σ

2−σ �
� +

1

η

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1)

)

≤ηG
2

μ
+

(σ
2

) σ

2−σ
(
4η

μ

)
+
1

η

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1)

)
.

©1 holds due to Lemma 1 by setting g = ḡt , ut = xt , ut+1 = xt+1, u
∗ = y∗t , and λ = η.©2 holds due to

Φ is μ-strongly convex. ©3 holds, because 〈u, v〉 ≤ a
2 ‖u‖2 + 1

2a ‖v‖2 holds for any u, v, and a > 0.

The last inequality holds due to η ≤ μ

4 and 1 ≤ σ ≤ 2.
Telescoping it over t , we have

T∑
t=1

(
ft (xt ) − ft (y

∗
t )
)
+

T−1∑
t=1

(‖xt − xt+1‖σ − ��y∗t − y∗t+1��σ )

≤TηG
2

μ
+
1

η

T∑
t=1

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t , xt+1)

)
+

(σ
2

) σ

2−σ
(
4η

μ

)

=
TηG2

μ
+
1

η
�
�

T∑
t=2

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t−1, xt )

)�
� +

1

η

(
BΦ(y

∗
1, x1) − BΦ(y

∗
T , xT+1)

)

+

(σ
2

) σ

2−σ
(
4η

μ

)

≤TηG
2

μ
+
1

η
�
�

T∑
t=2

(
BΦ(y

∗
t , xt ) − BΦ(y

∗
t−1, xt )

)�
� +

1

η
BΦ(y

∗
1, x1) +

(σ
2

) σ

2−σ
(
4η

μ

)

©1
≤
TηG2

μ
+
2G

η

T−1∑
t=1

��y∗t+1 − y∗t �� + 1

η
BΦ(y

∗
1, x1) +

(σ
2

) σ

2−σ
(
4η

μ

)

≤TηG
2

μ
+
2GD

η
+
R2

η
+

(σ
2

) σ

2−σ
(
4η

μ

)

�
√
TD +

√
T .

©1 holds due to

BΦ(y
∗
t+1, xt+1) − BΦ(y

∗
t , xt+1) ≤ 2G ��y∗t+1 − y∗t ��

according to Lemma 2. The last inequality holds by setting η = min{
√

D+G
T
,
μ

4 }.
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Since it holds for any seqence of ft ∈ F , we finally obtain

sup
{ft }Tt=1∈F T

RMD-OCO
D �

√
TD +

√
T .

It completes the proof. �

Proof to Theorem 3:

Proof. This proof is inspired by Reference [50], but our new analysis generalizes [50] to the
case of switching cost.
Construct the function ft (xt ) = 〈vt , xt 〉 for any t ∈ [T ]. Here, vt ∈ {1,−1}d , and every element

vt (j ) with j ∈ [d] is a random variable, which is sampled from a Rademacher distribution inde-
pendently. For any online method A ∈ A, its regret is bounded as follows:

sup
{ft }Tt=1

RA
D ≥ RA

D

= E
v1:T

T∑
t=1

ft (xt ) +
T∑
t=1

‖xt − xt−1‖σ − E
v1:T

min
{yt }Tt=1∈LTD

�
�

T∑
t=1

ft (yt ) +
T∑
t=1

��yt − yt−1��σ �
�

= E
v1:T

�
�

T∑
t=1

ft (xt ) +
T∑
t=1

‖xt − xt−1‖σ �
� + E

v1:T
max

{yt }Tt=1∈LTD
�
�−

T∑
t=1

ft (yt ) −
T∑
t=1

��yt − yt−1��σ �
�

= E
v1:T

max
{yt }Tt=1∈LTD

T∑
t=1

(
ft (xt ) − ft (yt ) − ��yt − yt−1��σ ) + E

v1:T

T∑
t=1

‖xt − xt−1‖σ

= E
v1:T

max
{yt }Tt=1∈LTD

T∑
t=1

(〈
vt , xt − yt 〉 − ��yt − yt−1��σ ) + E

v1:T

T∑
t=1

‖xt − xt−1‖σ . (4)

For any optimal sequence of {y∗t }Tt=1,

E
vt

〈
vt , xt−1 − y∗t−1

〉
=

〈
E
vt
vt , xt−1 − y∗t−1

〉
=
〈
0, xt−1 − y∗t−1

〉
= 0.

Thus, for any optimal sequence of {y∗t }Tt=1, we have

E
v1:T

max
{yt }Tt=1∈LTD

T∑
t=1

(〈
vt , xt − yt 〉 − ��yt − yt−1��σ )

= E
v1:T

�
�

T∑
t=1

〈
vt , xt − y∗t

〉 − T∑
t=1

��y∗t − y∗t−1��σ �
�

= E
v1:T

T∑
t=1

〈
vt , xt − xt−1 + y∗t−1 − y∗t

〉 − E
v1:T

T∑
t=1

��yt − y∗t−1��σ

= E
v1:T

T∑
t=1

〈vt , xt − xt−1〉 + E
v1:T

�
�

T∑
t=1

〈
vt , y

∗
t−1 − y∗t

〉 − T∑
t=1

��yt − y∗t−1��σ �
�

= E
v1:T

T∑
t=1

〈vt , xt − xt−1〉 + E
v1:T

max
{yt }Tt=1∈LTD

�
�

T∑
t=1

〈
vt , yt−1 − yt 〉 −

T∑
t=1

��yt − yt−1��σ �
�
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Substituting it into Equation (6), we have

sup
{ft }Tt=1

RA
D

≥ E
v1:T

�
�

T∑
t=1

〈vt , xt − xt−1〉 +
T∑
t=1

‖xt − xt−1‖σ �
�

+ E
v1:T

max
{yt }Tt=1∈LTD

�
�

T∑
t=1

〈
vt , yt−1 − yt 〉 −

T∑
t=1

��yt − yt−1��σ �
�

©1
≥ E

v1:T
max

{yt }Tt=1∈LTD
�
�

T∑
t=1

〈
vt , yt−1 − yt 〉 −

T∑
t=1

��yt − yt−1��σ �
�

≥ E
v1:T

max
{yt }Tt=1∈LTD

T∑
t=1

〈
vt , yt−1 − yt 〉 − max

{yt }Tt=1∈LTD

T∑
t=1

��yt − yt−1��σ
©2
≥ E

v1:T
max

{yt }Tt=1∈LTD

T∑
t=1

〈
vt , yt−1 − yt 〉 − Dσ

©3
= E

v1:T
max

{yt }Tt=1∈LTD

T∑
t=1

〈
vt ,−yt 〉 − Dσ

©4
= E

v1:T
max

{yt }Tt=1∈LTD

T∑
t=1

〈
vt , yt

〉 − Dσ .

©1 holds due to

E
vt
(〈vt , xt − xt−1〉 + ‖xt − xt−1‖σ ) =

〈
E
vt
vt , xt − xt−1

〉
+ ‖xt − xt−1‖σ = ‖xt − xt−1‖σ ≥ 0.

©2 holds, because, for any sequence {yt }Tt=1,
∑T

t=1
��yt − yt−1�� ≤ D. Thus,

max
{yt }Tt=1∈LTD

T∑
t=1

��yt − yt−1��σ ≤ max
{yt }Tt=1∈LTD

�
�

T∑
t=1

��yt − yt−1���
�
σ

≤ Dσ .

©3 holds, because, for any vector yt−1,

E
vt

〈
vt , yt−1

〉
=

〈
E
vt
vt , yt−1

〉
=
〈
0, yt−1

〉
= 0.

©4 holds, because the domain of vt is symmetric.
Furthermore, we construct a sequence {yt }Tt=1 as follows.
(1) Evenly split {yt }Tt=1 into two subsets: {yt }T1t=1 and {yT1+t }T2t=1. Here, T1 = T2 = T

2 .

(2) After that, evenly split {yt }T1t=1 into N := min{D
R
,T1} subsets, that is, {yt }

T1
N

t=1, {yt }
2T1
N

t=
T1
N
+1
,

{yt }
3T1
N

t=
2T1
N
+1
, . . . , {yt }T1

t=
(N−1)T1

N
+1
.

(3) For the ith subset of the sequence {yt }T1t=1, let the values in it be same, and denote it by ui

with ‖ui ‖ ≤ R
2 . For the whole sequence {yT1+t }T2t=1, let all the values be same, namely uN .
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(4) For the sequence of {yt }T1t=1, elements in different subsets are different such that ‖ui+1 −
ui ‖ ≤ ‖ui+1‖ + ‖ui ‖ ≤ R. Thus,

T−1∑
t=1

‖yt+1 − yt ‖ =
T1−1∑
t=1

‖yt+1 − yt ‖ +
T∑

t=T1

‖yt+1 − yt ‖

=

N−1∑
i=1

‖ui+1 − ui ‖ + 0

≤(N − 1)R
≤D.

The last inequality holds due to (N − 1)R ≤ D. It implies that {yt }Tt=1 under our construc-
tion is feasible.

Then, we have

E
v1:T

max
{yt }Tt=1∈LTD

T∑
t=1

〈
vt , yt

〉
= E

v1:T
max

{yt }Tt=1∈LTD
��
�
T1∑
t=1

〈
vt , yt

〉
+

T∑
t=T1+1

〈
vt , yt

〉��
�

= E
v1:T

N∑
i=1

max
‖ui ‖≤ R

2

〈 T i

N∑
t=1+

T (i−1)
N

vt , ui

〉
+ E

v1:T
max
‖uN ‖≤ R

2

〈 T∑
t=T1+1

vt , uN

〉

©1
=

R

2
E
v1:T

N∑
i=1

��������
T i

N∑
t=1+

T (i−1)
N

vt

��������
+
R

2
E
v1:T

�������
T∑

t=T1+1

vt

�������
©2
≥

R

2
√
d

E
v1:T

N∑
i=1

d∑
j=1

��������
T i

N∑
t=1+

T (i−1)
N

vt (j )

��������
+

R

2
√
d

E
v1:T

d∑
j=1

�������
T∑

t=T1+1

vt (j )

�������
©3
=

√
dNR

2
· Ω �

�
√

T

N
�
� +

R
√
d

2
· Ω �

�
√
T

2
�
�

=Ω
(√

R
√
TNR +

√
T
)

©4
= Ω
(√
TD +

√
T
)
.

©1 holds, because the maximum is obtained at the boundary of the domain. ©2 holds, because, for

any v ∈ Rd , ‖v‖1 ≤
√
d ‖v‖2. ©3 holds due to a classic result [23], that is,

E
v1:T

��������
T i

N∑
t=1+

T (i−1)
N

vt (j )

��������
= Ω �

�
√

T

N
�
�.

©4 holds due to D − R ≤ NR ≤ D + R, which implies that NR � D holds for D > 0.
Therefore, we obtain

sup
{ft }Tt=1

RA
D ≥ E

v1:T
max

{yt }Tt=1∈XT

T∑
t=1

〈
vt , yt

〉 − Dσ = Ω
(√
TD +

√
T
)
.

The last equality holds, because Dσ is a constant, and it does not increase over T .
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Since it holds for any online algorithm A ∈ A, we finally have

inf
A∈A sup

{ft }Tt=1∈F T

= Ω
(√
TD +

√
T
)
.

It completes the proof. �
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